Image Classification for Grey Natural Scene Images
This repository is for greyscale scene image classification from the in-class Kaggle challenge and NCTU Computer Vision HW.
The dataset is a little different:
Model | Batch_size | Accuracy | Extra |
---|---|---|---|
EfficientNetB0 | 64 | 0.92 | |
EfficientNetB0 | 64 | 0.906 | noisy-student pretrain |
EfficientNetB1 | 64 | 0.926 | |
EfficientNetB1 | 64 | 0.906 | noisy-student pretrain |
EfficientNetB4 | 16 | 0.92 | |
EfficientNetB4 | 32 | 0.95 | |
EfficientNetB4 | 32 | 0.89 | Freeze 1st Block(Conv+BN+Activation) |
EfficientNetB4 | 32 | 0.9 | Freeze 1~2 Blocks(Conv+BN+Activation) |
EfficientNetB5 | 16 | 0.926 | |
EfficientNetB6 | 16 | 0.9 | Freeze 1st Block(Conv+BN+Activation) |
EfficientNetB6 | 16 | 0.926 | Freeze 1~2 Blocks(Conv+BN+Activation) |
EfficientNetB6 | 16 | 0.94 | Freeze 1~3 Blocks(Conv+BN+Activation) |
EfficientNetB6 | 16 | 0.85 | Freeze 1~4 Blocks(Conv+BN+Activation) |
Freeze first 12 layers (0~47 layers in the implment)
|Model| Batch_size| Accuracy| Extra|
| ——————— | |:——:|:—-:|
| ResNet50 | 64 | 0.953 |Generate New Data|
| ResNet50 | 64 | 0.966 |on-the-fly|
| ResNet50 | 64 | 0.946 |on-the-fly + constrast_pil|
| ResNet50 | 64 | 0.98 |on-the-fly + rotation 5|
| ResNet50 | 64 | 0.96 |on-the-fly + rotation 7|
| ResNet50 | 64 | 0.953 |on-the-fly + rotation 10|
Model | Batch_size | Accuracy | Extra |
---|---|---|---|
R50x1 | 64 | 0.966 | |
R50x3 | 64 | 0.96 | |
R101x1 | 64 | 0.96 | |
R101x3 | 64 | 0.953 |