项目作者: PreferredAI

项目描述 :
Code of the paper "Bilateral Variational Autoencoder for Collaborative Filtering", WSDM'21
高级语言: Python
项目地址: git://github.com/PreferredAI/bi-vae.git
创建时间: 2020-12-28T06:53:18Z
项目社区:https://github.com/PreferredAI/bi-vae

开源协议:MIT License

下载


BiVAE: Bilateral Variational Autoencoder

This is the code for the paper:

Bilateral Variational Autoencoder for Collaborative Filtering


Quoc-Tuan Truong, Aghiles Salah, and Hady W. Lauw


Presented at WSDM 2021

If you find the code and data useful in your research, please cite:

  1. @inproceedings{truong2021bilateral,
  2. title={Bilateral Variational Autoencoder for Collaborative Filtering},
  3. author={Truong, Quoc-Tuan, and Salah, Aghiles, and Lauw, Hady W},
  4. booktitle={ACM International Conference on Web Search and Data Mining, {WSDM} 2021}
  5. year={2021},
  6. }

How to run

  1. pip install -r requirements.txt

Run BiVAE model:

  1. python bivae.py -d office -k 20 -e '[40]' -a tanh -l pois -ne 500 -bs 128 -lr 0.001 -tk 50 -v

Run BiVAE model with Constrained Adaptive Priors (CAP):

  • CAP requires feature learning, here we use vanilla VAE as an example:
    ```bash

    user side

    python feature_learning.py -d office -w user -k 20 -e ‘[100]’ -a tanh -l pois -ne 100 -bs 128 -lr 0.001 -s 123 -v

item side

python feature_learning.py -d office -w item -k 20 -e ‘[100]’ -a tanh -l pois -ne 100 -bs 128 -lr 0.001 -s 123 -v

  1. - When user/item features are ready, we can train BiVAE with CAP:
  2. ```bash
  3. python bivae_cap.py -d office -uc -ic -k 20 -e '[40]' -a tanh -l pois -ne 500 -bs 128 -lr 0.001 -tk 50 -v

Contact

Questions and discussion are welcome: www.qttruong.com