项目作者: alexjschiffer

项目描述 :
Automated Efficient Mixed Model Association Studies - R Package
高级语言: R
项目地址: git://github.com/alexjschiffer/AutoEmma.git
创建时间: 2018-07-06T19:14:36Z
项目社区:https://github.com/alexjschiffer/AutoEmma

开源协议:GNU Lesser General Public License v3.0

下载


AutoEmma

Automated Efficient Mixed Model Association Studies - R Package

Installation

  1. Download AutoEmma_1.2.2.tar.gz from GitHub.
  2. Open R-Studio and type the following command into the Console.
    1. install.packages("file/path/AutoEmma_1.2.2.tar.gz", repos = NULL, type = "Source")

Quick Tutorial

  1. Load AutoEmma Package into your current R session: library(AutoEmma)
  2. Create diagnostic graphs for your input files: ae.input.graphs(gfile = "your_genotypes.csv", pfile = "your_phenotypes.csv")
  3. Create a map file: my_map <- ae.make.map(file = "your_phenotypes.csv")
  4. Run AutoEmma: results <- ae.run(genotype = "your_genotypes.csv", phenotype = "your_phenotypes.csv", map = my_map, method = "REML")
  5. Customize graphs if desired: ae.manhattan(df = results, file_name = "new_manhattan.png", point_size = 1.2, colors = c("royalblue3", "gray18"), title = "Manhattan Plot", sl = 4.5, pval = 0.05, snps = 100000, exclude = 0.5, annotate = TRUE)

Change Log

Version 1.0.0

  • Initial release

Version 1.0.1

  • Simplified input diagnostic graphs
  • Fixed a bug in strain selection for cladogram creation

Version 1.1.1

  • Improved manhattan and Q-Q plots
  • Added annotation of suggestive SNPs to manhattan plot

Version 1.2.0

  • Added SEM option to average phenotype plot
  • Improved look of input diagnostics graphs
  • Vectorized averages calculation to speed up input diagnostics graphs

Version 1.2.1

  • Added option to choose between wide-screen graphs (16x9) and square graphs (9x9)
  • Improved text updates for input diagnostic graphs

Version 1.2.2

  • Removed reference in documentation to non-existent kinship use option
  • Added support for generating kinship matrix using all snps or only snps where all strains have information.