Connect mlr3 with OpenML
OpenML integration to the mlr3 ecosystem.
mlr3oml
?OpenML is an open-source platform that
facilitates the sharing and dissemination of machine learning research
data. All entities on the platform have unique identifiers and
standardized (meta)data that can be accessed via an open-access REST API
or the web interface. mlr3oml
allows to work with the REST API through
R and integrates OpenML with the mlr3
ecosystem. Note that some upload options are currently not supported,
use the OpenML package
package for this.
As a brief demo, we show how to access an OpenML task, convert it to anmlr3::Task
and associated mlr3::Resampling
, and conduct a simple
resample experiment.
library(mlr3oml)
library(mlr3)
# Download and print the OpenML task with ID 145953
oml_task = otsk(145953)
oml_task
## <OMLTask:145953>
## * Type: Supervised Classification
## * Data: kr-vs-kp (id: 3; dim: 3196x37)
## * Target: class
## * Estimation: crossvalidation (id: 1; repeats: 1, folds: 10)
# Access the OpenML data object on which the task is built
oml_task$data
## <OMLData:3:kr-vs-kp> (3196x37)
## * Default target: class
# Convert the OpenML task to an mlr3 task and resampling
task = as_task(oml_task)
resampling = as_resampling(oml_task)
# Conduct a simple resample experiment
rr = resample(task, lrn("classif.rpart"), resampling)
rr$aggregate()
## classif.ce
## 0.0319181
Besides working with objects with known IDs, data of interest can also
be queried using listing functions. Below, we search for datasets with
10 - 20 features, 100 to 10000 observations and 2 classes.
odatasets = list_oml_data(
number_features = c(10, 20),
number_instances = c(100, 10000),
number_classes = 2
)
head(odatasets[, c("data_id", "name")])
## data_id name
## 1: 13 breast-cancer
## 2: 15 breast-w
## 3: 29 credit-approval
## 4: 49 heart-c
## 5: 50 tic-tac-toe
## 6: 51 heart-h
To retrieve individual datasets, you can use odt
and either manually
construct a new Task
object using as_task()
or use it data.table
format.
odataset = odt(29)
# Dataset as data.table
str(odataset$data)
## Classes 'data.table' and 'data.frame': 690 obs. of 16 variables:
## $ A1 : Factor w/ 2 levels "b","a": 1 2 2 1 1 1 1 2 1 1 ...
## $ A2 : num 30.8 58.7 24.5 27.8 20.2 ...
## $ A3 : num 0 4.46 0.5 1.54 5.62 ...
## $ A4 : Factor w/ 4 levels "u","y","l","t": 1 1 1 1 1 1 1 1 2 2 ...
## $ A5 : Factor w/ 3 levels "g","p","gg": 1 1 1 1 1 1 1 1 2 2 ...
## $ A6 : Factor w/ 14 levels "c","d","cc","i",..: 10 9 9 10 10 7 8 3 6 10 ...
## $ A7 : Factor w/ 9 levels "v","h","bb","j",..: 1 2 2 1 1 1 2 1 2 1 ...
## $ A8 : num 1.25 3.04 1.5 3.75 1.71 ...
## $ A9 : Factor w/ 2 levels "t","f": 1 1 1 1 1 1 1 1 1 1 ...
## $ A10 : Factor w/ 2 levels "t","f": 1 1 2 1 2 2 2 2 2 2 ...
## $ A11 : int 1 6 0 5 0 0 0 0 0 0 ...
## $ A12 : Factor w/ 2 levels "t","f": 2 2 2 1 2 1 1 2 2 1 ...
## $ A13 : Factor w/ 3 levels "g","p","s": 1 1 1 1 3 1 1 1 1 1 ...
## $ A14 : int 202 43 280 100 120 360 164 80 180 52 ...
## $ A15 : int 0 560 824 3 0 0 31285 1349 314 1442 ...
## $ class: Factor w/ 2 levels "+","-": 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, ".internal.selfref")=<externalptr>
# Creating a new task
otask = as_task(odataset)
otask
## <TaskClassif:credit-approval> (690 x 16)
## * Target: class
## * Properties: twoclass
## * Features (15):
## - fct (9): A1, A10, A12, A13, A4, A5, A6, A7, A9
## - int (3): A11, A14, A15
## - dbl (3): A2, A3, A8
R6
classes.mlr3
mlr3oml.cache
arff
and parquet
filetype for datasets are supported.mlr3
book.mlr3oml is a free and open source software project that encourages
participation and feedback. If you have any issues, questions,
suggestions or feedback, please do not hesitate to open an “issue” about
it on the GitHub page!
In case of problems / bugs, it is often helpful if you provide a
“minimum working example” that showcases the behaviour (but don’t worry
about this if the bug is obvious).