Hyperband tuning for mlr3
mlr3hyperband adds the optimization algorithms Successive Halving
(Jamieson and Talwalkar 2016) and Hyperband (Li et al. 2018) to the
mlr3 ecosystem. The implementation in
mlr3hyperband features improved scheduling and parallelizes the
evaluation of configurations. The package includes tuners for
hyperparameter optimization in
mlr3tuning and optimizers for
black-box optimization in bbotk.
There are several sections about hyperparameter optimization in the
mlr3book.
The gallery features a series of
case studies on Hyperband.
Install the last release from CRAN:
install.packages("mlr3hyperband")
Install the development version from GitHub:
remotes::install_github("mlr-org/mlr3hyperband")
We optimize the hyperparameters of an XGBoost model on the
Sonar data
set. The number of boosting rounds nrounds
is the fidelity parameter.
We tag this parameter with "budget"
in the search space.
library(mlr3hyperband)
library(mlr3learners)
learner = lrn("classif.xgboost",
nrounds = to_tune(p_int(27, 243, tags = "budget")),
eta = to_tune(1e-4, 1, logscale = TRUE),
max_depth = to_tune(1, 20),
colsample_bytree = to_tune(1e-1, 1),
colsample_bylevel = to_tune(1e-1, 1),
lambda = to_tune(1e-3, 1e3, logscale = TRUE),
alpha = to_tune(1e-3, 1e3, logscale = TRUE),
subsample = to_tune(1e-1, 1)
)
We use the tune()
function to run the optimization.
instance = tune(
tnr("hyperband", eta = 3),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce")
)
The instance contains the best-performing hyperparameter configuration.
instance$result
## nrounds eta max_depth colsample_bytree colsample_bylevel lambda alpha subsample
## 1: 27 -2.102951 3 0.7175178 0.5419011 -5.390012 -4.696385 0.193622
## 3 variables not shown: [learner_param_vals, x_domain, classif.ce]
The archive contains all evaluated hyperparameter configurations.
Hyperband adds the "stage"
and "braket"
.
as.data.table(instance$archive)[, .(stage, bracket, classif.ce, nrounds)]
## stage bracket classif.ce nrounds
## 1: 0 2 0.3489583 27
## 2: 0 2 0.2434896 27
## 3: 0 2 0.2591146 27
## 4: 0 2 0.3489583 27
## 5: 0 2 0.5052083 27
## ---
## 18: 0 0 0.2434896 243
## 19: 0 0 0.4960938 243
## 20: 0 0 0.2903646 243
## 21: 2 2 0.2473958 243
## 22: 1 1 0.2421875 243
We fit a final model with optimized hyperparameters to make predictions
on new data.
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("sonar"))