项目作者: timbmg

项目描述 :
Variational Autoencoder and Conditional Variational Autoencoder on MNIST in PyTorch
高级语言: Python
项目地址: git://github.com/timbmg/VAE-CVAE-MNIST.git
创建时间: 2018-02-26T12:54:18Z
项目社区:https://github.com/timbmg/VAE-CVAE-MNIST

开源协议:

下载


Variational Autoencoder & Conditional Variational Autoenoder on MNIST

VAE paper: Auto-Encoding Variational Bayes

CVAE paper: Semi-supervised Learning with Deep Generative Models


In order to run conditional variational autoencoder, add --conditional to the the command. Check out the other commandline options in the code for hyperparameter settings (like learning rate, batch size, encoder/decoder layer depth and size).


Results

All plots obtained after 10 epochs of training. Hyperparameters accordning to default settings in the code; not tuned.

z ~ q(z|x) and q(z|x,c)

The modeled latent distribution after 10 epochs and 100 samples per digit.

VAE CVAE

p(x|z) and p(x|z,c)

Randomly sampled z, and their output. For CVAE, each c has been given as input once.

VAE CVAE