项目作者: DeepanshS

项目描述 :
Linear inversion of two-dimensional isotropic-anisotropic NMR correlation spectrum.
高级语言: Python
项目地址: git://github.com/DeepanshS/mrinversion.git
创建时间: 2019-04-01T13:51:33Z
项目社区:https://github.com/DeepanshS/mrinversion

开源协议:BSD 3-Clause "New" or "Revised" License

下载


Mrinversion

Deployment PyPI version PyPI - Python Version
Build Status GitHub Workflow Status Read the Docs
License License
Metrics codecov

The mrinversion python package is based on the statistical learning technique for determining the underlying distribution of the magnetic resonance (NMR) parameters.

The library utilizes the mrsimulator
package for generating solid-state NMR spectra and
scikit-learn package for statistical learning.


Features

The mrinversion package includes

  • Spectral Inversion: Two-dimensional solid-state NMR spectrum of dilute spin-systems correlating
    the isotropic to anisotropic frequencies to a three-dimensional distribution of NMR tensor parameters.
    Presently, we support the inversion of

    • Magic angle turning (MAT), Phase adjusted spinning sidebands (PASS), and similar
      spectra correlating the isotropic chemical shift resonances to pure anisotropic
      spinning sideband resonances into a three-dimensional distribution of
      nuclear shielding tensor parameters—-isotropic chemical shift, shielding
      anisotropy and asymmetry parameters—-defined using the Haeberlen convention.

    • Magic angle flipping (MAF) spectra correlating the isotropic chemical shift
      resonances to pure anisotropic resonances into a three-dimensional distribution of
      nuclear shielding tensor parameters—-isotropic chemical shift, shielding
      anisotropy and asymmetry parameters—-defined using the Haeberlen convention.

  • Relaxometry Inversion: Inversion of NMR relaxometry measurements to the distribution of
    relaxation parameters (T1, T2).

For more information, refer to the
documentation.

View our example gallery

Installation

  1. $ pip install mrinversion

Please read our installation document for details.

How to cite

If you use this work in your publication, please cite the following.

  • Srivastava, D. J.; Grandinetti P. J., Statistical learning of NMR tensors from 2D
    isotropic/anisotropic correlation nuclear magnetic resonance spectra, J. Chem. Phys.
    153, 134201 (2020). DOI:10.1063/5.0023345.

  • Deepansh J. Srivastava, Maxwell Venetos, Philip J. Grandinetti, Shyam Dwaraknath, & Alexis McCarthy. (2021, May 26). mrsimulator: v0.6.0 (Version v0.6.0). Zenodo. http://doi.org/10.5281/zenodo.4814638

Additionally, if you use the CSDM data model, please consider citing

  • Srivastava DJ, Vosegaard T, Massiot D, Grandinetti PJ (2020) Core Scientific Dataset Model: A lightweight and portable model and file format for multi-dimensional scientific data. PLOS ONE 15(1): e0225953. https://doi.org/10.1371/journal.pone.0225953