项目作者: ikar1234

项目描述 :
Spectral graph theory for Biological network analysis
高级语言: HTML
项目地址: git://github.com/ikar1234/BioSpecGT.git
创建时间: 2020-08-13T08:53:43Z
项目社区:https://github.com/ikar1234/BioSpecGT

开源协议:

下载


BioSpecGT

Spectral graph theory for Biological network analysis

  • Guarantees high-performance by using Cython
  • Friendly interface, easy to use, verbose error messages
  • ???
  • Profit

Comparison to networkx

  • Random generation of a regular graph

Usage

For the full documentation, see the docs.

Graph creation

  1. from BioSpecGT.biospecgt.graph.generator import complete_graph
  2. g = complete_graph(n=100)

Graph algorithms

  1. from BioSpecGT.biospecgt.graph.generator import complete_graph
  2. from BioSpecGT.biospecgt.utils.graphutils import minimum_spanning_tree
  3. g = complete_graph(n=100)
  4. msp = minimum_spanning_tree(g)

Spectral graph theory

  1. from BioSpecGT.biospecgt.linalg.spectral import laplacian_matrix
  2. from BioSpecGT.biospecgt.graph.generator import k_regular_graph
  3. g = k_regular_graph(n=100, k=20, selfloop=False)
  4. l = laplacian_matrix(g)

Spectral clustering

  1. from BioSpecGT.biospecgt.graph.generator import complete_graph
  2. g = complete_graph(n=100)

Importing datasets

  1. from BioSpecGT.biospecgt.graph.generator import complete_graph
  2. g = complete_graph(n=100)

Co-expression networks

  1. from BioSpecGT.biospecgt.bio.coexpression import build_coexpr
  2. from BioSpecGT.biospecgt.bio.base import top10_genes
  3. # gene expression matrix
  4. data = ...
  5. c = build_coexpr(data)
  6. print('Top 10 co-expressed genes:')
  7. print('\n'.join(top10_genes(c)))

Vizualization

  1. from BioSpecGT.biospecgt.graph.generator import complete_graph
  2. g = complete_graph(n=100)