Poisson distribution.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we’ve built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Poisson distribution.
bash
npm install @stdlib/stats-base-dists-poisson
script
tag without installation and bundlers, use the [ES Module][es-module] available on the [esm
][esm-url] branch (see [README][esm-readme]).deno
][deno-url] branch (see [README][deno-readme] for usage intructions).umd
][umd-url] branch (see [README][umd-readme]).javascript
var poisson = require( '@stdlib/stats-base-dists-poisson' );
javascript
var dist = poisson;
// returns {...}
cdf( x, lambda )
][@stdlib/stats/base/dists/poisson/cdf]: Poisson distribution cumulative distribution function.logpmf( x, lambda )
][@stdlib/stats/base/dists/poisson/logpmf]: evaluate the natural logarithm of the probability mass function (PMF) for a Poisson distribution.mgf( t, lambda )
][@stdlib/stats/base/dists/poisson/mgf]: Poisson distribution moment-generating function (MGF).pmf( x, lambda )
][@stdlib/stats/base/dists/poisson/pmf]: Poisson distribution probability mass function (PMF).quantile( p, lambda )
][@stdlib/stats/base/dists/poisson/quantile]: Poisson distribution quantile function.entropy( lambda )
][@stdlib/stats/base/dists/poisson/entropy]: Poisson distribution entropy.kurtosis( lambda )
][@stdlib/stats/base/dists/poisson/kurtosis]: Poisson distribution excess kurtosis.mean( lambda )
][@stdlib/stats/base/dists/poisson/mean]: Poisson distribution expected value.median( lambda )
][@stdlib/stats/base/dists/poisson/median]: Poisson distribution median.mode( lambda )
][@stdlib/stats/base/dists/poisson/mode]: Poisson distribution mode.skewness( lambda )
][@stdlib/stats/base/dists/poisson/skewness]: Poisson distribution skewness.stdev( lambda )
][@stdlib/stats/base/dists/poisson/stdev]: Poisson distribution standard deviation.variance( lambda )
][@stdlib/stats/base/dists/poisson/variance]: Poisson distribution variance.Poisson( [lambda] )
][@stdlib/stats/base/dists/poisson/ctor]: Poisson distribution constructor.javascript
var Poisson = require( '@stdlib/stats-base-dists-poisson' ).Poisson;
var dist = new Poisson( 2.0 );
var y = dist.pmf( 3.0 );
// returns ~0.18
y = dist.pmf( 2.3 );
// returns 0.0
javascript
var poisson = require( '@stdlib/stats-base-dists-poisson' );
/*
* Let's take a customer service center example: average rate of customer inquiries is 3 per hour.
* This situation can be modeled using a Poisson distribution with λ = 3
*/
var lambda = 3;
// Mean can be used to calculate the average number of inquiries per hour:
console.log( poisson.mean( lambda ) );
// => 3
// Standard deviation can be used to calculate the measure of the spread of inquiries around the mean:
console.log( poisson.stdev( lambda ) );
// => ~1.7321
// Variance can be used to calculate the variability of the number of inquiries:
console.log( poisson.variance( lambda ) );
// => 3
// PMF can be used to calculate specific number of inquiries in an hour:
console.log( poisson.pmf( 4, lambda ) );
// => ~0.1680
// CDF can be used to calculate probability up to certain number of inquiries in an hour:
console.log( poisson.cdf( 2, lambda ) );
// => ~0.4232
// Quantile can be used to calculate the number of inquiries at which you can be 80% confident that the actual number will not exceed.
console.log( poisson.quantile( 0.8, lambda ) );
// => 4
// MGF can be used for more advanced statistical analyses and generating moments of the distribution.
console.log( poisson.mgf( 1.0, lambda ) );
// => ~173.2690