Integer Squaring Algorithm
Download Slides (Format : PDF, Size : 1.1 MB)
Fig1.Algorithm-2 Pseudocode
Fig2.Algorithm-2 Example
>>> IntegerMultiplication("1 1","1 1",Base=2)
>>> 1 0 0 1
Complexity : 3
additions, 2
data read (Inner Loop)
Fig3.Algorithm-3 Pseudocode
Fig4.Algorithm-3 Example
(U,H,L)
should be set to zero after each iteration and add shifted (U,H,L)
outside of the loop (modified in code)
>>> IntegerSquaring("1 1","1 1",Base=2)
>>> 1 1 0 1
Fig5.Algorithm-3(Modified) Pseudocode
Fig6.Algorithm-3(Modified) Example
>>> IntegerSquaringModified("1 1",Base=2)
>>> 1 0 0 1
Complexity : 3
additions, 2
data read (Inner Loop)
main.py
for automatic doctest —> python main.py
or python3 main.py
IntegerSquaring
and IntegerMultiplication
and IntegerSquaringModified
from main.py
:
>>> from main import IntegerSquaring,IntegerMultiplication,IntegerSquaringModified
>>> IntegerSquaring("1 6",Base=10)
'3 8 6'
>>> IntegerSquaringModified("1 6",Base=10)
'2 5 6'
>>> IntegerMultiplication("1 6","1 6",Base=10)
'2 5 6'
"31 12"
in base 32