代码空间


摘要(Abstract)

NFV,即网络功能虚拟化,Network Function Virtualization。通过使用x86等通用性硬件以及虚拟化技术,来承载很多功能的软件处理。从而降低网络昂贵的设备成本。可以通过软硬件解耦及功能抽象,使网络设备功能不再依赖于专用硬件,资源可以充分灵活共享,实现新业务的快速开发和部署,并基于实际业务需求进行自动部署、弹性伸缩、故障隔离和自愈等。


主题(Topic)

项目(Project)
piecioshka/warsawjs-workshop-28-pwa piecioshka/warsawjs-workshop-44-netflix lukaszbasaj/manual-javascript UrszulaP/warsawjs-workshop-55-itunes lukaszbasaj/warsawjs-workshop-36-podstawy-javascript britzl/oneroom sollywollyson/Edhesive-AP-Comp-Sci-Term-1 Tym17/RemoteRanch LudumHub/LD37-Artisan Jovvik/M3137year2019 Desulfo/PSD-to-HTML-3 nidup/ludumdare37 maxpostnikov/ludum-dare-37 markusfisch/RobotClash free-creations/rachmaninow-vigil NikolaiVChr/flightgear-saab-ja-37-viggen Dorthu/ld37-one-room asyzruffz/Ludum-Dare-37 k8s-workshop brews/baysplinepy JaniceZhao/Douban-Dushu-Dataset DK22Pac/vice-37 cliwrap/alpine-37 Zeyad-37/UseCases Zeyad-37/RxRedux 37Questions/web test_main() File "cnn_test_auto.py", line 119, in test_main loss,acuracy = test(data_path,generate_test, model_path) File "cnn_test_auto.py", line 76, in test loss, accuracy = my_spatial_model.evaluate_generator(generate_test, steps=test_step) #98需要才能重新确定值的大小 File "D:\python 3.6.4\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper return func(*args, **kwargs) File "D:\python 3.6.4\lib\site-packages\keras\engine\training.py", line 1472, in evaluate_generator verbose=verbose) File "D:\python 3.6.4\lib\site-packages\keras\engine\training_generator.py", line 346, in evaluate_generator outs = model.test_on_batch(x, y, sample_weight=sample_weight) File "D:\python 3.6.4\lib\site-packages\keras\engine\training.py", line 1256, in test_on_batch outputs = self.test_function(ins) File "D:\python 3.6.4\lib\site-packages\keras\backend\tensorflow_backend.py", line 2715, in __call__ return self._call(inputs) File "D:\python 3.6.4\lib\site-packages\keras\backend\tensorflow_backend.py", line 2675, in _call fetched = self._callable_fn(*array_vals) File "D:\python 3.6.4\lib\site-packages\tensorflow\python\client\session.py", line 1439, in __call__ run_metadata_ptr) File "D:\python 3.6.4\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 528, in __exit__ c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[128,64,1,1] and type float on /job :localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node block2_sepconv1_1/separable_conv2d}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. [[{{node metrics_33/acc/Mean_1}}]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info." class="topic-tag topic-tag-link"> out-of-GPU-memoery laugengebaeck/BwInf-37-R2 T-N-L-37/live_streams aasu14/Garden-Nerd-Flower-Recognition-Data-Science-Competition 全部项目